
Computer Arithmetic 

Arithmetic instructions in digital computers manipulate data to produce results necessary for 
the solution of computational problems. An arithmetic processor is the part of a processor unit 
that executes arithmetic operations. The data type assumed to reside in processor registers 
during the execution of an arithmetic instruction is specified in the definition of the 
instruction. The solution to any problem that is stated by a finite number of well-defined 
procedural steps is called an algorithm. 

Addition and Subtraction with Signed-Magnitude Data: We designate the magnitude of the 
two numbers by A and B. When the signed numbers are added or subtracted, we find that there 
are eight different conditions to consider, depending on the sign of the numbers and the 
operation performed. These conditions are listed in the first column of Table 18. The other 
columns in the table show the actual operation to be performed with the magnitude of the 
numbers. The last column is needed to prevent a negative zero. In other words, when two 
equal numbers are subtracted, the result should be +0 not -0. 

 



Hardware Implementation: Let A and B be two registers that hold the magnitudes of the 
numbers, and As and Bs be two flip-flops that hold the corresponding signs. Consider now the 
hardware implementation of the algorithms above: 

1- First, a parallel-adder is needed to perform the microoperation A + B. 
2- Second, a comparator circuit is needed to establish if A > B, A = B, or A < B. 
3- Third, two parallel-subtractor circuits are needed to perform the microoperations (A-B) 

and (B-A). 
4- The sign relationship can be determined from an exclusive- OR gate with As and Bs as 

inputs. 

Careful investigation of the alternatives reveals that the use of 2's complement for subtraction 
and comparison is an efficient procedure that requires only an adder and a complementer. 
Figure 51 shows a block diagram of the hardware for implementing the addition and 
subtraction operations. It consists of registers A and B and sign flip-flops As and Bs. 
Subtraction is done by adding A to the 2's complement of B. The output carry is transferred to 
flip-flop E, where it can be checked to determine the relative magnitudes of the two numbers. 
The add-overflow flip-flop AVF holds the overflow bit when A and B are added. 

The adder is equal to the sum A + B. When M = 1, the l's complement of B is applied to the 
adder, the input carry is 1, and output S = A + B +1. This is equal to A plus the 2's 
complement of B, which is equivalent to the subtraction A - B. The signed 2's complement 
representation of numbers together with arithmetic algorithms for addition and subtraction are 
introduced as: The leftmost bit of a binary number represents the sign bit: 0 for positive and 1 
for negative. If the sign bit is 1, the entire number is represented in 2's complement form. Thus 
+33 is represented as 00100001 and -33 as 11011111. Note that 11011111 is the 2's 
complement of 00100001, and vice versa. The addition of two numbers in signed 2's 
complement form consists of adding the numbers with the sign bits treated the same as the 
other bits of the number. A carry-out of the sign-bit position is discarded. The subtraction 
consists of first taking the 2's complement of the subtrahend and then adding it to the minuend. 



Multiplication Algorithms 

Multiplication of two fixed-point binary numbers in signed-magnitude representation is done 
with paper and pencil by a process of successive shift and add operations. This process is best 
illustrated with a numerical example: 

 

Figure 52 is a flowchart of the hardware multiply algorithm. Initially, the multiplicand is in B 
and the multiplier in Q. Their corresponding signs are in Bs and Qs, respectively. The signs are 
compared, and both A and Q are set to correspond to the sign of the product since a double- 
length product will be stored in registers A and Q. Registers A and E are cleared and the 
sequence counter SC is set to a number equal to the number of bits of the multiplier. 

 



The numerical example is repeated to clarify the hardware multiplication process. It operates 
on the fact that strings of 0's in the multiplier require no addition but just shifting, while string 
of 1's in the multiplier require addition with shifting. The table 19 illustrate numerical example 
for multiplier 23 (which in binary equal 10111) by 19 (which binary equal 10011) gives the 
result 437(in binary equal 0110110101). 

 

 
 
Memory Hierarchy 

The memory unit is an essential component in any digital computer since it is needed 
for storing programs and data. The memory unit that communicates directly with the CPU is 
called the main memory. Devices that provide backup storage are called auxiliary memory. 
They are used for storing system programs, large data files, and other backup information. 
Only programs and data currently needed by the processor reside in main memory. All other 
information is stored in auxiliary memory and transferred to main memory when needed. 
A special very-high-speed memory called a cache is sometimes used to increase the speed of 
processing by making current programs and data available to the CPU at a rapid rate. Fig(29) 
shows the Memory Hierarchy: 



 
 
 
 

 

 Main Memory The main memory is the central storage unit in a computer system. 
It is a relatively large and fast memory used to store programs and data during the computer 
operation. The principal technology used for the main memory is based on semiconductor 
integrated circuits. Integrated circuit RAM chips are available in two possible operating 
modes: 

The static RAM consists essentially of internal flip-flops that store the binary 
information. 

The dynamic RAM stores the binary information in the form of electric charges that are 
applied to capacitors. 

 
Associative Memory 

Many data-processing applications require the search of items in a table stored in 
memory. An assembler program searches the symbol address table in order to extract the 
symbol's binary equivalent. 

A memory unit accessed by content is called an associative memory or content 
addressable memory (CAM). When a word is written in an associative memory is capable of 
finding an empty unused location to store the word. When a word is to be read from an 
associative memory, the content of the word, or part of the word, is specified. The memory 
locates all words which match the specified content and marks them for reading. 
The block diagram of an associative memory is shown in Fig(30): 

 



To illustrate with a numerical example, suppose that the argument register A and the key 
register K have the bit configuration shown below. Only the three left most bits of A are 
compared with memory words because K has l's in these positions. 

 
 
 
Word 2 matches the unmasked argument field because the three leftmost bits of the argument and the word are equal. 

 
Cache Memory 

If the active portions of the program and data are placed in a fast small memory, the 
average memory access time can be reduced, thus reducing the total execution time of the 
program. Such a fast small memory is referred to as a cache memory. It is placed between the 
CPU and main memory. 

The basic operation of the cache is as follows. When the CPU needs to access memory, 
the cache is examined. If the word is found in the cache, it is read from the fast memory. If the 
word addressed by the CPU is not found in the cache, the main memory is accessed to read the 
word. The performance of cache memory is frequently measured in terms of a quantity called 
hit ratio. When the CPU refers to memory and finds the word in cache, it is said to produce a 
hit. If the word is not found in cache, it is in main memory and it counts as a miss. 

Three types of mapping procedures are of practical interest when considering the 
organization of cache memory: 

1. Associative mapping 
2. Direct mapping 
3. Set-associative mapping 

 
Virtual Memory 

Virtual memory is a concept used in some large computer systems that permit the user to 
construct programs as though a large memory space were available, equal to the totality of 
auxiliary memory. Virtual memory is used to give programmers the illusion that they have a 
very large memory at their disposal, even though the computer actually has a relatively small 
main memory. A virtual memory system provides a mechanism for translating program- 
generated addresses into correct main memory locations. 
As an illustration, consider a computer with a main-memory capacity of 32K words (K = 
1024). Fifteen bits are needed to specify a physical address in memory since 32K = 215. 
Suppose that the computer has available auxiliary memory for storing 220 = 1024K words. 



Thus auxiliary memory has a capacity for storing information equivalent to the capacity of 32 
main memories. Denoting the address space by N and the memory space by M, we then have 
for this example N = 1024K and M = 32K. 

The mapping table may be stored in a separate memory as shown in Fig(31) or in main 
memory. In the first case, an additional memory unit is required as well as one extra memory 



access time. In the second case, the table takes space from main memory and two accesses to 
memory are required with the program running at half speed. 

The table implementation of the address mapping is simplified if the information in the 
address space and the memory space are each divided into groups of fixed size. The physical 
memory is broken down into groups of equal size pages and blocks called blocks, which may 
range from 64 to 4096 words each. The term page refers to groups of address space of the 
same size. For example, if a page or block consists of IK words, then, using the previous 
example, address space is divided into 1024 pages and main memory is divided into 32 blocks. 

The organization of the memory mapping table in a paged system is shown in Fig(32). 
The memory-page table consists of eight words, one for each page. The address in the page 
table denotes the page number and the content of the word gives the block number where that 
page is stored in main memory. The table shows that pages 1, 2, 5, and 6 are now available in 
main memory in blocks 0, 1, 2, and 3, respectively. A presence bit in each location indicates 
whether the page has been transferred from auxiliary memory into main memory. A0 in the 
presence bit indicates that this page is not available in main memory. 



Memory Management Hardware 
A memory management system is a collection of hardware and software procedures for 

managing the various programs residing in memory. The memory management software is part 
of an overall operating system available in many computers. 
The basic components of a memory management unit are: 

1. A facility for dynamic storage relocation that maps logical memory references into 
physical memory addresses. 

2. A provision for sharing common programs stored in memory by different users. 
3. Protection of information against unauthorized access between users and preventing 

users from changing operating system functions. 
The fixed page size used in the virtual memory system causes certain difficulties with respect 
to program size and the logical structure of programs. It is more convenient to divide programs 
and segment data into logical parts called segments. 

A segment is a set of logically related instructions or data elements associated with a 
given name. Segments may be generated by the programmer or by the operating system. 
Examples of segments are a subroutine, an array of data, a table of symbols, or a user's 
program. The address generated by a segmented program is called a logical address. The 
logical address may be larger than the physical memory address as in virtual memory, but it 
may also be equal, and sometimes even smaller than the length of the physical memory 
address. 
Numerical Example: A numerical example may clarify the operation of the memory 
management unit. Consider the 20-bit logical address specified in Fig(33-a).This configuration 
allows each segment to have any number of pages up to 256. The smallest possible segment 
will have one page or 256 words. The largest possible segment will have 256 pages, for a total 
of 256 x 256 = 64K words. The physical memory shown in Fig(33-b). 

 

 
Consider a program loaded into memory that requires five pages. The operating system may 
assign to this program segment 6 and pages 0 through 4, as shown in Fig(34-a). The total 



logical address range for the program is from hexadecimal 60000 to 604FF. The 
correspondence between each memory block and logical page number is then entered in a 
table as shown in Fig(34-b). 

 

The information from this table is entered in the segment and page tables as shown in 
Fig(35- a). Now consider the specific logical address given in Fig(35). The 20-bit address is 
listed as a five-digit hexadecimal number. It refers to word number 7E of page 2 in segment 6. 
The base of segment 6 in the page table is at address 35. Segment 6 has associated with it five 
pages, as shown in the page table at addresses 35 through 39. Page 2 of segment 6 is at address 
35 + 2 = 37. The physical memory block is found in the page table to be 019. Word 7E in 
block 19 gives the 20-bit physical address 0197E. Note that page 0 of segment 6 maps into 
block 12 and page 1 maps into block 0. The associative memory in Fig(35-b) shows that pages 
2 and 4 of segment 6 have been referenced previously and therefore their corresponding block 
numbers are stored in the associative memory. 

 

Continue 



 



 


